
elba Documentation
Release 0.2.0

David Cao

Aug 20, 2018

Usage

1 Getting Started 3
1.1 Installation . 3
1.2 Quick Start . 4

2 The Manifest 7
2.1 [package] . 7
2.2 [dependencies] and [dev_dependencies] . 8
2.3 [targets] . 8
2.4 [workspace] . 10
2.5 An aside: the lockfile . 11

3 Configuration 13
3.1 Config Format . 13

4 Installing a Package 17
4.1 Installing a local package . 17
4.2 Installing a package from an index . 17
4.3 Uninstalling a package . 18

5 Custom Subcommands 19

6 Publishing to the Default Index 21

7 Resolutions 23
7.1 Syntax . 23

8 Indices 25
8.1 Index Resolutions . 25
8.2 index.toml . 26
8.3 Metadata structure . 26
8.4 Index Retrieval Semantics . 27

9 Dependencies 29
9.1 Versions . 29
9.2 Dependency Resolution . 31

10 The Global Cache 33
10.1 Installed binaries . 33

i

10.2 Folder structure . 34
10.3 Cleaning the cache . 34

11 Indices and tables 35

ii

elba Documentation, Release 0.2.0

elba is a package manager for the Idris programming language. This book aims to be a mostly comprehensive guide
on actually using it.

Usage 1

elba Documentation, Release 0.2.0

2 Usage

CHAPTER 1

Getting Started

This section is for getting up-to-speed with elba as fast as possible, covering getting elba installed on your machine in
the first place and making a new project.

By the end of this chapter, you should have a basic elba installation up-and-running, as well as a general overview of
how to use elba for day-to-day Idris development.

1.1 Installation

The easiest and most convenient way of installing elba is to use the pre-built binaries for elba, which can be downloaded
from GitHub Releases. To install this way, just download the corresponding archive for your platform, extract the
executable somewhere in your PATH, add ~/.elba/bin to your PATH in order to execute elba-installed packages,
and you’re done!

Note: For Linux platforms, there are two varieties of binaries available: one suffixed with -gnu and the other suffixed
with -musl. The -gnu binary is dynamically linked to the system libc, while the -musl binary is statically linked
using musl.

For most users, the -gnu binary should work fine, but if it doesn’t, try using the -musl binary.

1.1.1 Installing with Cargo

Because elba is written in Rust, it is available as an installable crate from crates.io. In order to install elba this way,
you should have a copy of the Rust toolchain installed on your computer first. The process for this is explained on the
Rust website. Note that during installation, when prompted for which version of Rust should be installed, you should
choose the nightly version of Rust. elba depends on certain features which can only be enabled in the nightly build of
Rust.

Once you have Rust installed, installing elba is pretty self-explanatory:

3

https://github.com/elba/elba/releases
https://crates.io
https://www.rust-lang.org/en-US/install.html
https://www.rust-lang.org/en-US/install.html

elba Documentation, Release 0.2.0

$ cargo +nightly install elba
$ elba # should work!

Remember to add ~/.elba/bin to your PATH to be able to run elba-installed packages.

1.1.2 Building elba

Building elba from source is much the same process as installing it using cargo; the only difference is that instead of
using a stable, versioned-crate available from crates.io, elba’s source code is used directly. You’ll still need to have the
nightly version of the Rust toolchain installed (see the above section for more details). After that’s done, download
elba’s source code and install it:

$ git clone https://github.com/elba/elba
$ cd elba
$ cargo +nightly install --release
$ elba # should work!

Remember to add ~/.elba/bin to your PATH to be able to run elba-installed packages.

1.2 Quick Start

This section intends to be a whirlwind tour of all the functionality available with elba. For more information on each
step, refer to either the Usage or Reference chapters.

1.2.1 Creating a package

Creating a package is easy with elba: all you need is a package name. Note that names in elba are special in that they
are always namespaced; every name in elba comes with a group part and a name part, separated with a slash. For more
information, see the information on names in the manifest chapter.

$ elba new asd # won't work: no namespace
$ elba new grp/asd # ok!

This command will generate a new elba project with name grp/asd in the folder ./asd/, along with an associated
git project. If you want to omit the git project, pass the option --vcs none.

By default, elba will create a project with a binary target, with a main file located at src/Main.idr. If you’d like
to generate a package with a library target instead, pass the --lib flag, which will add a library target to the manifest
and generate the file src/{group}/{name}.idr. This file structure of having a group followed by a name is just
convention, and isn’t required.

Regardless of which target is chosen, an elba.toml manifest file will also be generated.

Initializing a pre-existing package

If you already have an Idris project and want to turn it into an elba project, use the elba init command instead;
it follows the exact same syntax as elba new and is functionally identical, but uses the current directory instead of
making a new one.

4 Chapter 1. Getting Started

elba Documentation, Release 0.2.0

1.2.2 Adding dependencies

Now that a new package has been created, you can start to add packages as part of your dependencies. A package
can originate from one of three places: a git repository, a file directory, or a package index. Ordinary dependencies
are placed under the [dependencies] section, while dependencies that are only needed for tests and the like are
placed under [dev_dependencies]. Examples are shown below:

[dependencies]
"index/version" = "0.1.5" # uses the default index (i.e. the first specified one in
→˓configuration)
"index/explicit" = { version = "0.1.5", index = "index+dir+../index" } # uses the
→˓index specified
"directory/only" = { path = "../awesome" } # uses the package in the path specified
"git/master" = { git = "https://github.com/doesnt/exist" } # uses the master branch
"git/explicit" = { git = "https://github.com/doesnt/exist", branch = "beta" } #
→˓"branch" can be an arbitrary git ref: a tag, commit, etc.

For more information on the syntax regarding specifying and adding custom indices, see the chapters on Resolutions
and Configuration. More information about dependency specification syntax is available at its relevant chapter.

Note that only packages with library targets can be depended on.

At this point, you can add whatever files you want and import anything from your dependencies.

1.2.3 Targets

The manifest also allows you to specify which targets you want to have built for your package. There are three types
of targets:

• A library target allows this package to be depended on by other packages. A package can only have one library,
and the syntax follows the following:

[targets.lib]
the path which contains all of the lib files (*cannot* be a parent directory)
this is set to "src" by default
path = "src/"
a list of files to export
mods = [

"Awesome.A", # the file src/Awesome/A.idr
"Control.Zygohistomorphic.Prepromorphisms", # the file src/Control/

→˓Zygohistomorphic/Prepromorphisms.idr
]

• A bin target specifies a binary to be built. Multiple binaries can correspond to one package.

[[targets.bin]]
the name of the binary to create
name = "awes"
the path which contains all of the bin files (*cannot* be a parent directory)
this is set to "src" by default
path = "src/"
the path to the Main module of the binary
main = "Awesome.B"

Note: the format of the binary target has some nuance to it, so for more information, see the docs on the manifest
format.

1.2. Quick Start 5

elba Documentation, Release 0.2.0

• A test target specifies a test binary to build. It uses the same syntax as a bin target, with the difference that we
use [[targets.test]] to specify them and the test binary can depend on the dev-dependencies as well as
the root package’s library. A test binary succeeds upon execution if it returns exit code 0.

1.2.4 Building a package

. . . can be accomplished with the command:

$ # assuming the current directory is an elba package
$ elba build

For all elba build-related commands, the IDRIS_OPTS environment variable will dictate additional arguments to pass
to the Idris compiler (the flags passed by elba get higher priority). This can be helpful for packages which depend on
base installed Idris packages (e.g. if you want to pass -p effects to the compiler).

When building a local package, the output binaries are located at target/bin, while the output library is placed at
target/lib.

Interactive development with the REPL can also be accomplished with the command:

$ # assuming the current directory is an elba package
$ elba repl

Instead of placing the build outputs in a target/ folder, the elba repl command directly loads the files on-disk,
then cleans up any build files after execution.

elba uses an elba.lock lockfile to ensure that these builds are reproducible.

6 Chapter 1. Getting Started

CHAPTER 2

The Manifest

In order to keep track of package metadata like the name of a package and what targets should be built for that
particular package, elba uses an elba.toml manifest file. This file is divided into several different sections which
each provide information to elba about the package in question.

2.1 [package]

The first and most important section of the manifest is the [package] section, which lists all of the metadata about
the package. A complete example of a [package] section is shown below:

[package]
name = "jsmith/elba"
version = "0.1.0"
authors = ["John Smith <dcao@example.com>"]
description = "The best package ever released"
license = "MIT"

The namespaced name and version are the two most important parts of this specification. The name must contain
a group (i.e. a namespace) and a name, separated by a slash, or else the manifest will fail to parse. Additionally,
the name can only contain alphanumeric characters, hyphens, and underscores. Internally, elba ignores case and
treats hyphens and underscores equally when deciding if two names are identical. The version must follow Semantic
Version guidelines. Additionally, the package section contains fields to indicate the authors of the package and the
license which the code falls under. The authors section can be left empty, and each author should follow the format
name <email> (this is just a helpful convention to follow). The license field can be omitted entirely, as can the
description.

Note: Why namespacing?

Having to supply a namespace to all package names might seem like unnecessary work, but it has its benefits; this
design decision to require all package names to be namespaced was borne out of observations of other package ecosys-
tems where the lack of namespaces lead to significant problems down the line. In particular, namespaced packages
provide the following benefits:

7

https://semver.org/
https://semver.org/

elba Documentation, Release 0.2.0

• Packages which should belong to a single “group” or are a part of a single ecosystem can easily be grouped
together, rather than using ad-hoc kinda-sorta-namespacing by prefixing all related packages with some name,
which any untrusted package uploader can do

• Name-squatting becomes less of an issue; instead of one global http package in a package index, there are
now separate jsmith/http or whatever/http packages

• Namespacing doesn’t stop people from coming up with “creative” names; you can still create a package called
jsmith/unicorns_and_butterflies if you’d like.

2.2 [dependencies] and [dev_dependencies]

These sections of the manifest are mostly self-explanatory; they’re a place where you can specify the dependencies that
your package needs. All packages in the [dependencies] section will be loaded for every target of the package,
while the packages in the [dev_dependencies] section will only be loaded for test targets.

elba dependencies can originate from one of three places: a package index (think RubyGems or crates.io), in which the
package is identified by its version and package index (defaulting to the first package index specified in the config file;
a git repository, in which the package is identified by the url of the git repo and a git ref name (defaulting to “master”);
and a directory tree, in which the package is identified by its path.

An example of these sections and all the types of dependencies is shown below:

deps used for all targets
[dependencies]
"index/version" = "0.1.5" # uses the default index (i.e. the first specified one in
→˓configuration)
"index/explicit" = { version = "0.1.5", index = "index+dir+../index" } # uses the
→˓index specified
"directory/only" = { path = "../awesome" } # uses the package in the path specified

deps only used for the test targets
[dev_dependencies]
"git/master" = { git = "https://github.com/doesnt/exist" } # uses the master branch
"git/explicit" = { git = "https://github.com/doesnt/exist", branch = "beta" } #
→˓"branch" can be an arbitrary git ref: a tag, commit, etc.

elba’s syntax for versioning has several idiosyncrasies of its own, but the tl;dr version is that elba will always pick a
version of that package which is greater than or equal to and semver compatible with the version specified.

For more information about package indices, see the relevant reference page.

2.3 [targets]

In order to know which files to build and how to build them, elba manifest files also must specify a [targets]
section. There are three types of targets which elba can build:

• A library target is exactly what it sounds like: a built library of ibc files which can be used and imported by
other elba packages. Each package can only export a single library target; attempting to specify multiple library
targets will result in a manifest parsing error. The syntax for a library target is as follows:

[targets.lib]
The path to the library - defaults to "src"

(continues on next page)

8 Chapter 2. The Manifest

elba Documentation, Release 0.2.0

(continued from previous page)

path = "src"
The list of files which should be exported and made available for public use
mods = [
"Awesome.A", # the file src/Awesome/A.idr
"Control.Zygohistomorphic.Prepromorphisms", # the file src/Control/

→˓Zygohistomorphic/Prepromorphisms.idr
]
Optional flags to pass to the compiler
idris_opts = ["--warnpartial"]

The path key should be a sub-path of the package; it cannot reference parent or absolute directories of the
package. During the build process, all of the files under the path sub-path will be used to build the library and
export the Idris bytecode files corresponding to the items in mods.

• A binary target is a binary which should be generated based on a Main module. Packages can have as many
binary targets as they please; by default, all binary targets are built/installed in an elba build or elba
install invocation, but this can be changed with the --bin flag. The syntax for a binary target is as follows:

[[targets.bin]]
The name of the output binary
name = "whatever"
The path to the folder containing the binary source - defaults to "src"
path = "src/bin"
The path to the Main module
main = "Whatever" # corresponds to src/bin/Whatever.idr
Optional flags to pass to the compiler
idris_opts = ["--warnpartial"]

The name, and idris_opts fields should be self-explanatory, but the path and main arguments have some
more nuance to them. In order to maintain backwards compatibility while providing maximum flexibility, elba
follows several steps to resolve the location of a binary target. It’s pretty hard to explain these steps, but examples
are much easier to follow:

Example 1: strict subpath specified in main, with folders separated by
slashes. extension left unspecified.
main = "bin/Whatever/Module"
corresponds to bin/Whatever/Module.idr if it exists, otherwise uses
src/bin/Whatever/Module.idr because of the default `path` value; this file
should have a function Main.main

Example 2: main uses dots instead of slashes to separate folders, and
includes an idr extension
main = "Whatever.Module.idr"
because this is not a valid subpath (uses dots instead of slashes),
this corresponds to the first of the following files which exists:
- src/Whatever/Module/idr.idr (treat the last section as a module)
- src/Whatever/Module.idr (treat the last section as an extension:
applies to the "idr" extension only)
this file should have a function Main.main

Example 3: strict subpath specified with non-"idr" extension
main = "bin/Whatever/Module.custom"
corresponds to the first of the following files which exists:
- bin/Whatever/Module.idr
- src/bin/Whatever/Module.idr (due to the default `path` value)
in both cases, this file should have a function `Module.custom : IO ()`,

(continues on next page)

2.3. [targets] 9

elba Documentation, Release 0.2.0

(continued from previous page)

which will be used as the main function

Example 4: non-subpath combined with custom path and non-"idr" extension
path = "bin"
main = "Whatever.Module.custom"
corresponds to the first of the following files which exists:
- bin/Whatever/Module/custom.idr (treat the last section as a module)
- bin/Whatever/Module.idr (treat the last section as a function in a parent
→˓module)
if this corresponds to `bin/Whatever/Module.idr`, then the file should have a
function `Whatever.Module.custom : IO ()`, which will be used as the main
function

• A test target shares many similarities with a binary target: the syntax is almost exactly the same, and a single
package can have multiple test targets. Indeed, in elba, tests are just executables which return exit code 0 on
success and any other exit code on failure. The distinguishing features of a test target are as follows:

– The path value for test targets defaults to tests/ instead of src/

– The name value defaults to the value in main, with slashes and periods replaced with underscores and
test- prepended.

– Test targets have access to (i.e. can import from) all dev dependencies along with the package’s own
library target.

This means that if you want to test a library target, you don’t have to do anything special, just import your
library like you normally would.

If you want to test a binary, you can still do this, since a test will be built with all of the files in the same
directory as the test’s Main module, so if you put your test’s Main module in the folder as a binary target,
you can import everything that your binary target can from within the test.

– Test targets can be automatically built and run in one shot using the command elba test.

You’ll note that the syntax for specifying a test target is remarkably similar to that for specifying a binary target:

The name of the output test binary
name = "test-a"
The path to the test's Main module
main = "tests/TestA.idr"
Optional flags to pass to the compiler
idris_opts = ["--warnpartial"]

An elba package must specify either a lib target or a bin target, or else the manifest will be rejected as invalid.

For local packages, after building, all binaries will be output to the target/bin folder, and any library will be output
to the target/lib folder. Additionally, for libraries, if you pass the --lib-cg flag, elba will use the codegen
backend specified (or the C backend by default) and any export lists specified in the exported files of the library to
create output files under target/artifacts/<codegen name> (for more information on export lists and the
like, see this test case in the Idris compiler).

2.4 [workspace]

The last section in the manifest is the workspace section, used to indicate subprojects in the current directory. At the
moment, the only use for this field is to indicate to elba the location of a package in a subdirectory (for example, with if
a git repo has a package located in some subdirectory). Adding a package to the local workspace does not automatically
add it as a local dependency of the package, nor does it cause the workspace packages to be automatically built when

10 Chapter 2. The Manifest

https://github.com/idris-lang/Idris-dev/tree/master/test/ffi006

elba Documentation, Release 0.2.0

the root package is built. To add local directories as dependencies, they must manually be specified in either the
[dependencies] or [dev_dependencies] sections.

Note that the directory of every package must be a sub-path; it cannot refer to an absolute directory or a directory
above the root package.

An example workspace section is shown below:

[workspace]
"name/one" = "pkgs/one"
"other/pkg" = "wherever/youd/like"

Note that a a [workspace] section can stand alone and be parsed as a valid manifest if there is no package in the
root directory.

2.5 An aside: the lockfile

In order to keep track of the dependency tree and create reproducible builds, elba uses a lockfile called elba.lock.
This lockfile should not be modified in any way, as it can lead to unpredictable results during the build process.

The lockfile will not change so long as all of the packages in the lockfile satisfy the requirements of the manifest and
of its transitive dependencies. For git repositories, the lockfile will lock a package to a commit, which won’t change
given that the following conditions hold:

• If the manifest references a branch, the locked commit must be contained within that branch.

• If the manifest references a specific tag or commit, the locked commit must be equal to that tag or commit.

2.5. An aside: the lockfile 11

elba Documentation, Release 0.2.0

12 Chapter 2. The Manifest

CHAPTER 3

Configuration

elba’s behavior can be configured through the use of TOML configuration files and environment variables. elba checks
the current directory and all of its ancestors for a .elba/config file, unifying them in the following order (from
highest to lowest priority):

assuming current directory is /foo/bar/baz/quux
/foo/bar/baz/quux/.elba/config
/foo/bar/baz/.elba/config
/foo/bar/.elba/config
/foo/.elba/config
/.elba/config
Your platform-specific config file would go here
- Linux: ~/.config/elba/config
- macOS: /Users/<user>/Library/Preferences/elba/config
- Windows: %LOCALAPPDATA%\elba\config\config
$HOME/.elba/config

Any specified environment variables have the highest priority. This behavior heavily borrows from Cargo’s configura-
tion format.

Additionally, whenever elba executes an Idris invocation, elba will pass all of the arguments in the environment variable
IDRIS_OPTS to the compiler. In any case where the IDRIS_OPTS args conflict with elba’s own flags (i.e. if the
user specifies the flag --ide-mode but elba specifies --check), elba will override the user-specified flag.

3.1 Config Format

A complete default elba configuration file is listed below. Any options which are not assigned to will carry the default
value instead.

indices = [
"git+https://github.com/elba/elba"

]

(continues on next page)

13

https://doc.rust-lang.org/cargo/reference/config.html
https://doc.rust-lang.org/cargo/reference/config.html

elba Documentation, Release 0.2.0

(continued from previous page)

[term]
verbosity = "normal"
color = "true"

[alias]
i = "install"
b = "build"
t = "test"

[directories]
cache = "$HOME/.elba"

[[backend]]
name = "c"
default = true
portable = false
opts = []

Using environment variables

In order to specify an option as an environment variable, simply replace the “dots” of the op-
tion with underscores, and prefix with ELBA_. So the option term.verbosity becomes
ELBA_TERM_VERBOSITY.

3.1.1 indices

This key specifies all of the indices that should be made available to packages being built. Any dependent indices of
these indices will also be retrieved. The first index specified in this list will be used as the default index for packages
which don’t specify an index. This key should be a list of index urls; for more information on those, see the chapter
on Indices.

By default, the first and only index available to elba is the official package index.

3.1.2 [profile]

This section specifies the default author information that should be provided upon creating or initializing a new elba
project. By default, this section has no value, so new projects are made without an author.

[profile]
name = "John Smith"
email = "jsmith@example.com"

3.1.3 [term]

This section specifies options for terminal output, and has two fields:

• verbosity: specifies how verbose elba should be. Can be one of verbose, normal, quiet, or none.

• color: specifies if elba should try to print color output. Either true or false.

At the moment, neither of these options actually do anything.

14 Chapter 3. Configuration

https://github.com/elba/index

elba Documentation, Release 0.2.0

3.1.4 [alias]

This section is for providing aliases for commands. The key represents the alias and the value represents the the
command that it should be aliased to. Note that aliases can alias to other aliases, which can cause infinite recursion of
aliases. Be careful.

$ elba b # builds the local package with the default alias settings

3.1.5 [directories]

This section only contains one key: cache, for the location where the global cache should be placed. This controls
not only the location of elba’s temporary build directories but also the location of the global bin directory.

3.1.6 [[backend]]

This section specifies information about codegen backends. By default, information about one default codegen is
provided: the C backend. These settings are used whenever a codegen backend is unspecified or a codegen backend is
specified but doesn’t have any information on it available in the configuration. A example full [[backend]] section
is provided below:

[[backend]]
The name of the backend, passed to the --codegen or --portable-codegen
compiler option
name = "awesome"
Whether this should be treated as a new default codegen backend, instead of
the c one provided by default. Note that if multiple backends have default set
to true, the backend mentioned first will be used as the default
default = true
Whether or not this backend is portable
portable = false
The command to use to run executables generated by this codegen backend
If omitted, the executable will just be run by itself
runner = "awesomec"
The extension to use for executables generated by this codegen backend
elba will pass the name of the binary/test target with this extension set to
the -o flag of the Idris compiler
If unset, no extension-setting will happen
extension = "awe"
Options to be passed to the codegen backend
opts = []

3.1. Config Format 15

elba Documentation, Release 0.2.0

16 Chapter 3. Configuration

CHAPTER 4

Installing a Package

elba can build and install the binary targets of packages into a global directory (this directory is the bin subfolder
under the folder of the global cache; under normal circumstances, this should be located at ~/.elba/bin). In order
for these executables to be run from anywhere, you should this global bin folder to your PATH.

4.1 Installing a local package

To install a package which is located on-disk, simply navigate to the directory of the package and whack:

$ elba install

Doing that should rebuild the package if needed and install its binaries into the global bin folder.

Note that if a binary with the same name as one of the binaries being installed already exists, the above command will
fail. If you’re absolutely sure that you want to replace the old binary, run the command again but with the --force
flag. Additionally, if you only want to install certain binaries, you can use the --bin flag:

$ elba install --bin yeet # only install the binary named "yeet"

4.2 Installing a package from an index

If one or more package indices is specified in elba’s configuration, you also have the option of installing a package
from one of those indices. elba install optionally takes a package spec as an argument, which consists of three
parts:

• The name of the package to install (required)

• The resolution of the package; for the time being, this must be the resolution of an index (see Resolutions)

• The version of the package

The following are examples of valid elba install invocations:

17

elba Documentation, Release 0.2.0

$ # installs the latest version of `jsmith/one` from any index it can:
$ elba install "jsmith/one"
$ # installs version 1.0.0 of `jsmith/one` from any index it can:
$ elba install "jsmith/one|1.0.0"
$ # installs the latest version of `jsmith/one` from the index specified:
$ elba install "jsmith/one@index+tar+https://example.com/index.tar.gz"
$ # installs version 1.0.0 of `jsmith/one` from the index specified:
$ elba install "jsmith/one@index+tar+https://example.com/index.tar.gz|1.0.0"

As with installing a local package, if you want to replace any old binaries in the global bin directory, use the --force
flag, and if you want to choose which binaries to install, use the --bin flag.

Note that if a spec can apply to multiple packages at the same time (i.e. a package index wasn’t specified and multiple
package indices offer a package with the same name), elba will require you to provide more info to disambiguate
between the packages.

4.3 Uninstalling a package

Uninstalling a package is much the same process as installing: just pass a spec to the elba uninstall invocation.
Just like with elba install, if you specify an ambiguous spec, elba will require you to qualify it further.

18 Chapter 4. Installing a Package

CHAPTER 5

Custom Subcommands

To support extensibility in the future, elba supports running custom subcommands if it is passed a subcommand which
doesn’t exist. All arguments which were passed to elba will be instead passed to the subcommand:

$ elba installnt # executes `elba-installnt`
$ elba installnt awesome one two three # executes `elba-installnt awesome one two
→˓three`
$ elba installnt --cool awesome --one -f # executes `elba-installnt --cool awesome --
→˓one -f`

elba is also available as a Rust library, meaning that subcommands written in Rust can take advantage of elba’s internal
data structures and functions. This opens a variety of possibilities: using custom project scaffolds and templates,
running special heuristics on elba projects, etc.

19

elba Documentation, Release 0.2.0

20 Chapter 5. Custom Subcommands

CHAPTER 6

Publishing to the Default Index

At the moment, elba has neither a fancy online portal for managing packages nor the proper CLI commands for
publishing to a package repository. This will come in time, but for now, you’ll have to directly interact with the
GitHub repo of the official index.

The repo’s README has more information on what to do if you want to publish a package to the default index and
what’s allowed and not allowed, but the summary of how to publish a package is this:

1. Read The elba Guide, especially the parts about names in elba, resolutions in elba, and package indices.

2. Fork the index and modify it as needed.

3. Submit a pull request back in the original repo (elba/index).

Hopefully in the future we’ll have a better story for package publishing, but for now, it is what it is.

21

https://github.com/elba/index
https://github.com/elba/index

elba Documentation, Release 0.2.0

22 Chapter 6. Publishing to the Default Index

CHAPTER 7

Resolutions

A core tenet in elba’s functionality is the idea of resolutions. A resolution is a generic location from which some re-
source (a package or a package index) can be retrieved. Internally, elba distinguishes between two types of resolutions:

• A direct resolution refers to a direct location from which a resource (either a package or a package index) can
be downloaded. Direct resolutions themselves can include references to tarballs (either on a network somewhere
or located on disk), local directories on disk, or git repositories.

• An index resolution refers to an index from which information about a package’s location can be obtained. The
location of the index itself must be a direct resolution.

A package can have (and is identified by) either a direct resolution or an index resolution. A package index is identified
by its index resolution.

7.1 Syntax

In order to refer to these types of direct resolutions, elba has its own simple syntax for “resolution strings”:

• Each of the types of direct resolutions has its own syntax:

– For a direct resolution which points to a tarball, the resolution string must start with the identifier tar+
and include a properly-formed URL with either the http:///https:// (referring to a tarball on the
network somewhere) or file:// (referring to a local tarball) schemas:

These are all valid:
tar+http://example.com/asdf.tar.gz
tar+https://example.com/asdf
tar+file://../asdf.tar.gz

– For a direct resolution which points to a directory on disk, the resolution string must start with the identifier
dir+ and include a properly-formed path to a directory on disk:

These are all valid:
dir+asdf

(continues on next page)

23

elba Documentation, Release 0.2.0

(continued from previous page)

dir+./asdf
dir+../asdf/whatever/subfolder

On Windows, these would be valid too:
dir+C:\Users\John\etc

– For a direct resolution which points to a git repository, the resolution string must start with the identifier
git+ and provide the URL of the repository in question. Additionally, a git ref can be specified as part of
the fragment of the URL:

These are all valid:
git+https://github.com/example/doesnt-exist
git+https://github.com/example/doesnt-exist#master <- use the master branch
git+https://github.com/example/doesnt-exist#v1.0.0 <- use the "v1.0.0" tag
git+https://github.com/example/doesnt-exist#a4e13343 <- use the commit
→˓"a4e13343"
git+ssh://git@github.com/example/doesnt-exist <- using ssh instead of https

• For an index resolution, the resolution string must start with the identifier index+ and include the direct
resolution of the origin of the index:

These are all valid
index+tar+http://example.com/asdf.tar.gz
index+dir+../asdf/whatever/subfolder
index+git+ssh://git@github.com/example/doesnt-exist#a4e13343

24 Chapter 7. Resolutions

CHAPTER 8

Indices

A package index is a source of metadata for available packages, mapping package names and versions to requi-
site dependencies and a location to retrieve the package. Package indices serve several purposes in elba’s package
management system:

• Package indices group together versions of packages to make depending on and installing packages easier, more
convenient, and less prone to breakage (á la RubyGems, crates.io)

• Package indices can serve to curate sets of packages which are known to work together correctly (á la Stackage)

• They provide a level of indirection for packages; consumers of packages don’t have to be tied to directly de-
pending on a certain git repository or tarball, they can just rely on wherever the index says the package is
located.

Packages within package indices are capable of depending on packages in other indices (so long as the index specifies
all of the indices it depends on), and users of elba can specify multiple package indices to pull from. Additionally,
packages in package indices can have arbitrary direct resolutions as their actual location. This makes elba’s package
indices extremely powerful as a consequence.

8.1 Index Resolutions

An index is identified primarily by its index resolution, which corresponds to the place where the index is made
available. For more information, see the previous chapter on Resolutions.

In the elba.toml file, when a package requirement is declared with a certain version, elba goes through the follow-
ing steps to decide which package index to use:

• If the resolution of an index is provided in the dependency specification, elba will use that index.

[dependencies]
"test/one" = { version = "0.1.0", index = "index+dir+/index" }
for this package, elba will use the index located on-disk at `/index`.

• If no resolution is provided, elba will default to the first index listed in configuration.

25

elba Documentation, Release 0.2.0

.elba/config
indices = [

"index+dir+/one",
"index+dir+/two"

]

elba.toml
[dependencies]
"test/two" = "0.1.0"
for this package, elba will use the index located on-disk at `/one`.

Note that if a declared dependency uses an index that isn’t specified in the configuration, the package will fail to build
during dependency resolution with a “package not found” error.

8.2 index.toml

A package index is (when extracted, for tarballs) a directory tree of metadata files. All package indices must have a
configuration file at the root of this directory tree named index.toml, and specify the following keys:

[index]
secure = false

[index.dependencies]

The secure key tells elba whether to treat the index like a secure package index. At the moment, this flag does
nothing, but in the future, this flag may be used to enable compatibility with The Update Framework. For forwards
compatibility, package index maintainers should set this key to false.

The dependencies key is a mapping from the “name” of an index to its index resolution. The name can be whatever
you want, but that name will be how the index will be referred to within metadata files. Every other index which the
packages of this index need to build properly must be specified in this field, or else package building will fail during
dependency resolution.

8.3 Metadata structure

Package indices must follow a fairly strict folder and file structure in order for elba to interpret them correctly. The
top-level folders should be groups, and underneath the folder for each group should be a metadata file corresponding
to a package. The name of that file should be the second portion of the package’s name:

an example index:
.
|-- group
| |-- name # metadata file corresponding to the package `group/name`
| +-- cool # metadata file corresponding to the package `group/cool`
|-- next
| +-- zzz # metadata file corresponding to the package `next/zzz`
|
+-- index.toml

Each line of the metadata file for a package should be a complete JSON object corresponding to a specific version of
a package, and should follow the following structure (pretty-printed for readability):

26 Chapter 8. Indices

https://theupdateframework.github.io/

elba Documentation, Release 0.2.0

{
"name": "no_conflict/root",
"version": "1.0.0",
"dependencies": [
{

"name": "no_conflict/foo",
"req": "1.0.0"

},
{

"name": "awesome/bar",
"index": "best_index",
"req": ">= 0.1.0"

}
],
"yanked": false,
"location": "dir+test"

}

The name and version fields should be self-explanatory. The dependencies section should be a list of objects
with fields name, index, and req. name is self-explanatory, and req is just the version constraint of that particular
dependency. The value in index should correspond to an index name specified within the index’s config; if the index
is unspecified or if the index name can’t be found in configuration, elba will assume that the package is available from
the current index.

The yanked field allows for “yanking” of a package, which disallows future consumers of a package from using that
version (but allows current consumers of a yanked package version to continue using it). Finally, the location field
indicates the direct resolution of the package in question.

8.4 Index Retrieval Semantics

To avoid constantly updating the package index, elba will only update its indices if it’s building a global project (i.e.
elba install), or if a package cannot be found in the locally cached indices or changes versions in such a way
that is incompatible with an existing lockfile. This means that if an index changes the resolution of a package, the
package indices might not be updated immediately.

8.4. Index Retrieval Semantics 27

elba Documentation, Release 0.2.0

28 Chapter 8. Indices

CHAPTER 9

Dependencies

The most important job of a package manager is building dependencies of a package. Packages in elba can depend on
other packages in external indices, a local file directory, or a git repository.

9.1 Versions

Versions in elba follow a slightly modified version of Semantic Versioning in order to ensure that packages stay
compatible with each other. Most of the core concepts of Semantic Versioning are carried over:

• Differences in the major version indicate backwards incompatibility.

• Differences in the minor version indicate feature additions.

• Differences in the patch version indicate bug fixes or other non-feature additions.

• Pre-release versions can be indicated with suffixes: 1.0.0-pre.2-beta.5

In version constraints, the second and third components of a version can be omitted, in which case they are assumed
to be 0. A pre-release cannot be specified without also specifying the second and third components.

9.1.1 Version constraints

We say that a constraint satisfies a particular version if that particular version falls within the version constraint.

elba’s version constraints offer all the same standard operators (<, >, ^, ~, etc.), but they have some idiosyncrasies
which distinguish them from how other package managers work.

9.1.2 Inequality constraints

The “lowest-level” constraints elba offers are inequality constraints, which are fairly simple: < 1.0.0, >= 1.0.0,
etc.

29

https://semver.org/

elba Documentation, Release 0.2.0

By default, ‘‘<‘‘ constraints will ignore pre-release versions. for ergonomic reasons. If a package specifies that
they depend on < 1.0.0, they likely don’t want to have any of the pre-release versions of 1.0.0 selected, even if
those technically satisfy the constraint. If a package wants to include the pre-release versions as well it can opt in to
pre-releases by adding a bang after the constraint symbol like so: <! 1.0.0.

The bang trick also works for >= constraints as well: while >= 1.0.0 doesn’t match pre-releases of 1.0.0, >=!
1.0.0 does.

The constraint parser will allow you to add bangs to all types of less-than or greater-than constraints, but some of them
won’t do anything: <= 1.0.0 and <=! 1.0.0 mean the exact same thing, as do > 1.0.0 and >! 1.0.0.

Additionally, if the constraint specifies a pre-release, it will satisfy other pre-releases.

Two inequality constraints can be intersected to produce a new compound constraint. Note that at the moment, this is
the only case in which the parser will accept multiple constraints. Additionally, the greater-than bound must be written
before the less-than bound.

The new constraint must allow at least one version for it to be valid:

>= 1.0.0 < 1.4.2 # valid
>= 1.0.0 <= 1.0.0 # valid
< 1 > 0 # invalid: less-than specified before greater-than
> 1 < 0 # invalid: impossible constraint (satisfies no versions)

9.1.3 Caret constraints

Caret constraints in elba function the same as in other package managers. To quote Cargo’s documentation:

Caret requirements allow SemVer compatible updates to a specified version. An update is allowed if the
new version number does not modify the left-most non-zero digit in the major, minor, patch grouping.

Here are some examples of caret constraints (also taken from Cargo’s documentation):

^1.2.3 := >= 1.2.3 < 2.0.0
^1.2 := >= 1.2.0 < 2.0.0
^1 := >= 1.0.0 < 2.0.0
^0.2.3 := >= 0.2.3 < 0.3.0
^0.2 := >= 0.2.0 < 0.3.0
^0.0.3 := >= 0.0.3 < 0.0.4
^0.0 := >= 0.0.0 < 0.1.0
^0 := >= 0.0.0 < 1.0.0

A version without a sigil or inequality is assumed to be a caret constraint.

9.1.4 Tilde constraints

Tilde constraints are slightly stricted than caret constraints. If a tilde constraint specifies a major and minor version,
only changes in the patch version are allowed. If only a major version is specified, changes in the minor and patch
versions are allowed.

~1.2.3 := >= 1.2.3 < 1.3.0
~1.2 := >= 1.2.0 < 1.3.0
~1 := >= 1.0.0 < 2.0.0
~0.2.3 := >= 0.2.3 < 0.3.0
~0.2 := >= 0.2.0 < 0.3.0
~0.0.3 := >= 0.0.3 < 0.1.0

(continues on next page)

30 Chapter 9. Dependencies

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#caret-requirements

elba Documentation, Release 0.2.0

(continued from previous page)

~0.0 := >= 0.0.0 < 0.1.0
~0 := >= 0.0.0 < 1.0.0

9.1.5 The any constraint

If a package doesn’t care about what version of a package it uses (which it really should; it’s impossible to guarantee
infinite perpetual forwards compatibility with a package), the any constraint can be used, which satisfies every version.

9.1.6 Combining constraints with unions

Multiple constraints can be combined to form a larger constraint by placing a comma in between each constraint, like
so: 1.0.0, 2.0.0, >= 3.1.3 <= 3.1.3. This constraint represents the union between its three component
constraints, and it requires that the version has either a major version 1 or 2, or that it’s equal to 3.1.3.

9.2 Dependency Resolution

Dependency resolution for packages is an extremely hard problem (possibly/probably NP-complete). In order to figure
out which versions of a package should be used, elba uses the Pubgrub algorithm to do its dependency resolution.

While all of the gory details of how the algorithm works are available both at that design document and the Pub
documentation (where Pubgrub was first implemented), the main consequence of this decision is that only one version
of a package can be used at a time. If separate packages depend on different incompatible versions of the same
package, elba will return an error during dependency resolution and will refuse to continue until the conflict is solved.

On the one hand, this aspect of the dependency resolution system has its fair share of drawbacks:

• “Dependency hell” becomes much harder to avoid, since every dependent package is limited to one and only
one version

• Getting an ecosystem to upgrade major versions of a package can be much more challenging, as the entire
ecosystem is locked to the “stragglers” stuck on previous versions

However, it does have its advantages:

• Because there will be only one version of a package present at all times, any data structures or functions provided
by that package can be used freely across between dependencies without fear of incompatibile data structures
due to version differences

• Restricting users to one version of a package simplifies module name conflicts

Additionally, one benefit that elba gains from using the Pubgrub algorithm is that elba can provide extremely clear
error reporting to help pinpoint and fix the conflict in question. For example, given a dependency tree that looks like
this:

• conflict_simple/root|1.0.0 depends on conflict_simple/foo ^1.0.0 and
conflict_simple/baz ^1.0.0.

• conflict_simple/foo|1.0.0 depends on conflict_simple/bar ^2.0.0.

• conflict_simple/bar|2.0.0 depends on conflict_simple/baz ^3.0.0.

• conflict_simple/baz|1.0.0 and 3.0.0 have no dependencies.

• All these packages are located at the index index+dir+/index/.

elba will print the following output when trying to build it:

9.2. Dependency Resolution 31

https://github.com/dart-lang/pub/blob/master/doc/solver.md
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning

elba Documentation, Release 0.2.0

$ elba build
snip...
[error] version solving has failed

Because conflict_simple/bar@index+dir+/index/ any depends on
conflict_simple/baz@index+dir+/index/ >=3.0.0 <4.0.0,
conflict_simple/baz@index+dir+/index/ <!3.0.0, >=!4.0.0 is impossible.
And because conflict_simple/root@index+dir+/index/ >=1.0.0 <=1.0.0 depends
on conflict_simple/baz@index+dir+/index/ >=1.0.0 <2.0.0,
conflict_simple/root@index+dir+/index/ >=1.0.0 <=1.0.0 is impossible.

Nice!

32 Chapter 9. Dependencies

CHAPTER 10

The Global Cache

elba uses an internal global cache to store downloaded packages, build packages in a temporary clean directory, and
store built packages for future re-use. The structure of the global cache looks like the following:

this directory is platform specific:
- Linux: ~/.cache/elba
- Windows: %LOCALAPPDATA%\elba
- macOS: /Users/<user>/Library/Caches/elba
|
|-- build
| |-- a78bu877c78deadbeef...
| +-- # snip
|-- indices
| |-- d3237be53e69715112f...
| +-- # snip
|-- src
| |-- d2e4a311d3323b784ef...
| +-- # snip
+-- tmp

|-- a78bu877c78deadbeef...
+-- # snip

10.1 Installed binaries

Binaries are special in that they get their own folder separate from the internal cache stuff. Ordinarily this is stored
at ~/.elba/bin for all systems, but this can be controlled in the config, separate from the cache dir. Deleting the
whole folder should be safe, but deleting individual binaries might not be; if you try to uninstall them later down the
line, you might get an error.

33

elba Documentation, Release 0.2.0

10.2 Folder structure

10.2.1 build

This folder stores the binary (i.e. .ibc file) outputs of library builds. elba globally caches the builds of all depen-
dencies to avoid having to rebuild the same library over and over across different projects. Each built version of a
package gets its own hash which encapsulates the entire environment under which the package was built (package
dependencies, etc.), ensuring reproducible builds. This emulates the Nix package manager in some respects.

This folder and its subfolders are safe to delete, although it may cause rebuilds of some packages.

10.2.2 indices

This folder stores the downloaded package indices as specified in elba’s configuration, with a hash corresponding to
each different package index.

This folder and its subfolders are safe to delete; elba will redownload any needed indices on its next invocation.

10.2.3 src

This folder stores the downloaded sources of packages. elba globally caches these to avoid having to redownload the
same files over and over again.

This folder and its subfolders are safe to delete, although it may cause having to redownload and rebuild some pack-
ages.

10.2.4 tmp

This folder is a temporary build directory for packages, and is more of an implementation detail than anything else.
Folders correspond to build hashes for packages, and the internal structure of these folders mirrors the target/
directory of a local package build.

This folder and its subfolders can be safely deleted.

10.3 Cleaning the cache

. . . can be accomplished with the following invocation:

$ elba clean

Doing so clears the artifacts, build, indices, src, and tmp directories.

34 Chapter 10. The Global Cache

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

35

	Getting Started
	Installation
	Quick Start

	The Manifest
	[package]
	[dependencies] and [dev_dependencies]
	[targets]
	[workspace]
	An aside: the lockfile

	Configuration
	Config Format

	Installing a Package
	Installing a local package
	Installing a package from an index
	Uninstalling a package

	Custom Subcommands
	Publishing to the Default Index
	Resolutions
	Syntax

	Indices
	Index Resolutions
	index.toml
	Metadata structure
	Index Retrieval Semantics

	Dependencies
	Versions
	Dependency Resolution

	The Global Cache
	Installed binaries
	Folder structure
	Cleaning the cache

	Indices and tables

